

Empower.

Name: Company: Period:

4 Phase Engineering Design Process

Solar Energy **Phase III: Design Optimization** (Round 3 – Temperature)

Independent Variable:

IV: Temperature (degrees Celcuis)

How will you measure the IV? Infrared Thermometer pointed at different places on cell

To make the cell colder we can:

To make the cell hot we can:

Dependent Variable (aka Criteria):

DV aka Criteria: Voltage of solar cell

How will you will you measure the DV? Multimeter.

Control Variables:

What must be held constant in this experiment?

- •

SOLAR ENERGY

Educate. Engage. Empower.

Data Collection:

Collect data to drive your design decisions

Reminder: to measure VOLTAGE...

- 1. Leads are plugged into COM
 - and VΩmA
- 2. Dial set to DCV 20

RAW DATA TABLE:

IV: Temperature (°C)	DV:			
	Voltage (V)			Voltage (V)
	Trial 1	Trial 2	Trial 3	Average

SOLAR ENERGY

Educate. Engage. Empower.

SOLAR ENERGY

Optimal Level:

Look at your graph. What is the optimal temperature to maximize voltage?

Power is calculated with the P=IV equation. So when voltage increases, power _____

Extrapolate this pattern to even higher and lower temperatures to complete the sentence:

The power is maximum when the solar panels are <u>hot</u> or <u>cold</u>.

Look up the "Temperature Coefficient." Define it.

Extension:

The slope of this type of graph is called the "Temperature Coefficient", calculate <u>your</u> Temperature Coefficient: *(show all work and don't forget units on your answer)*

Design:

When writing your instructions manual, you will need to recommend a temperature that maximizes power for your stakeholder. What will your recommendation be? (full sentence)

