

DCS SYSTEMS FOR PV AND MICROGRIDS

Renewable Energy Education for a Sustainable Future

© SEI curriculum and educational materials are the intellectual property of SEI and may be used only as expressly permitted by SEI

Distributed Control System

 Control system that coordinates and supervise an entire plant of many varying process

o "SCADA"

- Process oriented system with close loop control
- Network Profinet (Ethernet/Fiber Optic)

- Operator/Engineering Stations: Graphic UI, logic, alarm management, reports, etc
- Servers: Dataserver, historian, cybersecurity, etc
- Controllers: Functional logic, IO coordinator
- Field devices: Modules, meters, process points communication.

PV utility scale system

DCS- Solar Farm

DCS- Solar Farm

 \circ PV Tracker optimization

- Substation Control and metering
- Global/individual inverter setpoints
- PV input data readings for troubleshooting
- Met station forecast and efficiency optimization
- Network status visualization

□Voltage - Active Power Correction

□ Frequency - Active Power

□Freq/Volt Droop Control

DPower Factor Compensation

Utility Scale Microgrid

DCS- Microgrid

HiWChaGra

P4

○ PV Optimization

- $_{\odot}$ Substation Control and metering
- $_{\odot}\,\text{BESS}$ Optimization protocols
- \circ Energy compensation
- \circ Energy cost saving modes
- \circ Network status visualization

WChaMax: Max Consuming Power

Zone 3: Consuming High Voltage

Voltage

Zone 4: Consuming,

Low Voltage

P5

P5-P6

gradient, or

LoWChaGra

Comercial Microgrid

